PHYSICS

CODE :- 14

Time Allowed: Two Hours		Marks: 100
Name:	Roll No.	

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Phy

Q.1. The dimensional formula for Pla (A)[ML ² T ²] and [MLT ⁻¹] (C)[ML ³ T ¹] and [ML ² T ⁻²]	nck's consta	nt and angular mom (B) [ML ² T ⁻¹] an (D) [MLT ⁻¹] and	$d [ML^2T^{-1}]$	ly
Q.2. Which of the following implies the	he greatest pr	recision?		
(A) 10.1 (C) 10.100		(B) 10.10		
•		(D) 10.1000		
Q.3. Which of the following is NOT o	ne of the fun	damental quantities	in physics?	
(A) time (C) weight	-	(B) length		
		(D) mass		
Q.4. SI unit of the power of a lens is				
(A) diopter		(B) horse power		
(C) metre		(D) watt		
Q.5.In physics, a radian per second is	a unit of			
(A) angular displacement		(B) angular veloci	ty	
(C) angular acceleration		(D) angular mome	ntum.	
Q.6. Dimensions of coefficient of visc	osity is:			
$(A)[M^2L^2T^2]$	•	(B) $[M^2LT^2]$		
$(C)[ML^{-1}T^{-1}]$		(D) $[MLT^2]$		
Q.7. A body of mass m moving with v coalesce to form one body. The s (A) 3u (B) u/3	relocity u col peed of the s	lides with a stationary stem after collision (C) 2u	ry body of mass 2 m i. is (D) u/4	and
0.0 5.				
Q.8. For an object moving in uniform of the instantaneous acceleration versions.	arcular motic	on with constant spec	ed, the direction of	
(A) tangent to the path of motion	0.001.13	(B) equal to zero		
(C) directed radially outward		(D) directed radiall	ly inward	
Q.9. The acceleration due to gravity on the time period of a pendulum who (A) \pi seconds	the moon is ose length is	1.6 meters per secon 6.4 meters will be (B) 2π seconds	nd square. On the mo	on,
(C) 4π seconds		(D) 8π seconds		
Q.10.Bernoulli's Principle is a stateme (A) energy conservation in dynamic (B) momentum conservation in dyn (C) hydrostatic equilibrium. (D) thermal equilibrium in fluids.	c fluids.			
Q.11.The velocity of a body depends o (A) uniform acceleration (C) non-uniform acceleration	n time as v =	20 + 0.1t ² . The bod (B) uniform retarda (D) non-uniform re	ition.	
KL14/Phy	Series-A	(D) non-unitomi fe	taruation	
	SCHES-A			1

Q.12.In any collision.	, the parameter which i	s conserved is	
(A) kinetic energ		(B) angular mome	
(C) linear mome	ntum	(D) potential energ	gy
Q.13. The work done	by any friction force is	s:	
(A) always positi			
(B) always negat	ive		
(C) always zero			
(D) either positiv	e or negative dependin	g upon the situation.	
Q.14. A person move from the initial	es 3m towards East and position to final positi	then 4m towards North. Thon is	ne resultant displacement
(A)7m	•	(B) 5m	
(C) 4m		(D) 1m	
given by the rel	from his house to scho ation $x = (4t+6t^2+3)$, who of his bicycle after 30	ool on his bicycle .The dista here distance x is in metres seconds is	nce traveled by him is and time t is in seconds.
(A) 360m/s^2	t of the oregene areas as	(B) 120m/s^2	
(C) 36 m/s^2		(D) 12 m/s^2	
O 16 Two physical o	quantities having the sa	me dimensions are	
(A) force and ene		(B) work and torqu	ıe
(C) pressure and		(D) impulse and m	
Q.17. The viscous fo		I ball moving in air with ter	
(A) \sqrt{v}	(B) v	(C) 1/√v	(D) v^2
Q.18.A particle of m relativistic kine (A) $1.66m_oc^2$ (C) $0.32 m_oc^2$	tic energy of the partic	ed 0.8c, where c is the speed le is nearly (B) $m_o c^2$ (D) 0.66 $m_o c^2$	d of light in vacuum. The
(B) acceleration (C) acceleration	rcular motion d acceleration both are n and speed are constan n and velocity both cha n and speed both are co	nt but velocity changes inge	
where the radiu	is of curvature of the re	ry of 72km/hr on a flat road od is 20m(g=10m/s²). In orderical by an angle θ greater th (B) tan ⁻¹ 4 (D) tan ⁻¹ 25.92	er to avoid sliding, he
KL14/Phy	Ser	ies-A	- 2

Q.21. A particle of mass 0.5 kg is 2.0m/s. Its acceleration at a	s moving in a circl ny moment is	e of radius 0.1	m with a consta	nt speed of
(A) zero . (C) 25 m/s ²	(B) 10 (D) 40			
Q.22. If the kinetic energy of a bowill be	ody becomes four	times its initial	value, the new	momentum
(A) three times the initial val(C) two times the initial val		ar times the inichanged	tial value	-
Q.23. A ship of mass $3x10^7$ kg initial of force $5x \cdot 10^4$ N. The water (A) 0.1 m/s	tially at rest, can ler resistance is neg (B) 0.5m/s	oe pulled throughigible. The sp (C) 1.0m/	peed attained by	3m by means the ship is (D)5.0m/s
Q.24.If the radius of the earth wer acceleration due to gravity at (A) increase and decrease res (C) increase at both places	t the pole and at th	e equator will (B) decre	ne same, the values ase and increase se at both place	e respectively
Q.25.Lorentz transformation equat (A) non-relativistic velocities (B) relativistic velocities only (C) all velocities: relativistic (D) photons only	s only y			
Q.26. A particle is dropped from a first two seconds and in the r	point above the entert two seconds i	orth. The ratio o	of the distance t	ravelled in the
() 1 1) 1:2	(C) 1:3	(D) 1	:4
Q.27. A mass M when attached to to extends it by L. In the extend by the spring on the mass is (A) Mg (B) M	ied equilibrium st	mass less spring the of the spring (C) 2/Mg	ng, whose upper g, the restoring (D) Zero	force exerted
Q.28. Under the influence of a transconstant speed v. The time pe	sverse magnetic fi eriod of revolution	eld, an electror	n moves in a circ	cle with
(A) proportional to v (C) proportional to \sqrt{v}		(B) proj	portional to v ² pendent of v	
2.29. The maximum velocity of a p 7 mm, is 4.4 m/s. The period	article, executing of oscillation is	simple harmon	ic motion with	an amplitude
(A) 100.00 s (C) 0.10 s		(B) 10.0 (D) 0.01		

Q.30.	The equation, $x = a \cos(wt + f)$	represents		
	(A) accelerator due to gravity		(B) uniform straigl	ht line motion
	(C) dc current		(D)simple harmon	ic motion
Q.31.	Relative to its period on the ea	rth, the period of a pe	ndulum on the moor	n is
	(A) shorter		(B) longer	
	(C) the same as on the earth		(D) varies with tim	ne
Q.32.	The phenomenon that cannot to	ake place in sound wa	ves is	
	(A) reflection	-	(B) interference	
	(C) diffraction		(D) polarization	
Q.33.	A semiconductor is cooled from	n 339K to 302K. Its re	esistance will	
	(A) decrease			
	(B) increase			
	(C) remain unchanged			
	(D) first increase then decreas	es .		
-	The speed of sound in air is v, the length L closed at one end is	the fundamental frequ	ency of the air colur	nn in a pipe of
	(A) v/4L	(B) v/2L	(C) 3v/4L	(D) v/L
-	A particle executes S.H.M of a	-		otential energy
	when the displacement of the p		-	
	(A) 0.512a	(B) 0.		
	(C) 0.827a	(D) 0.	983a	
Q.36.U	Ultrasonic waves are used in So			
	(A) have low frequency		ave short wavelengt	
	(C) are electromagnetic wave	es (D) c	an be easily produce	ea
Q.37.	The equation of a S.H.M is y=	8 sin (2x-40t), where t	he distances and tim	e are in centimeter
	and second respectively. The s	speed of the wave is		
	(A) 2.0cm/sec	(B) 20)cm/sec	
	(C) 30cm/sec	(D) 40	Ocm/sec	
Q.38.	The velocity of sound in air is		of an observer who	observes drop of
	10% in the sound from a static	-		
	(A) 30 m/s	(B) 33		
	(C) 297m/s	(D) 3.	30m/sec	

	· · · · · · · · · · · · · · · · · · ·	HP IOHOWANG the second	wen by $y = e^{i\alpha t}$, where α is a cost statement is
, , , , , , , , , , , , , , , , , , , ,	a nor annibit nai moni	C Motion	
(C) the motion is	simple harmonic m	otion only if α is posit	ive
(C) the motion is	simple harmonic m	otion only if a is need	·
(D) the motion is	s simple harmonic m	otion for all values of o	t.
Q.40. Spherical aberrati (A) using monoc	on in a thin lens can		
(B) using a doub	elet combination		-
(C) using a circu	lar annular mask ove	ne tha law	
(D) increasing th	e size of the lens	ti the iens	
Q.41. The equation of a displacement of the	wave propagating in	a medium is $v = a \sin \theta$	k(v-sit) where will it
statement is	ie particle in the med	ium at a distance x at a	κ(x-αt), where y is the ny instant t. The correct
(A) The velocity of	of the wave is α .		
(B) The wave is ac	dvancing in the negat	ive direction of the x-a	vie
(C) The wavelengt	In is $k/2\pi$.	of the X-a	A15.
(D) The frequency	of the wave is α .		
Q.42. The speed of a way two points is 60° . The (A) 0.72 m	re is 360 m/s and the ne path difference bet (B) 1.20m	frequency is 5 hertz. The ween them will be (C) 12.00 m	he phase difference between (D) 120.00 m
Q.43. The ratio of intensit	ties of two waves is nimum intensities wi	1.: 9. If these waves pr	oduce interference, the ratio
(A) 1 : 4	(B) 4:1	(C) 1 : 3	(D) 3 : 1
-5-11 WILL O	"" I I I I I I I I I I I I I I I I I I	aced on another similar of intensities of emerge	plate such that the angle ent and unpolarised
(A) 1 : 4	(B) 1:3	(C) 3:4	(D) 3:8
Q.45. The velocity of light If the observer move will be	emitted from a sources with a velocity v to	ce S as measured by a sowards S, then velocity	tationary observer O is c. of light as seen by him
(A) c+v	(B) c-v	(C) c	(D) $\sqrt{1 - v^2/c^2}$
Q.46. The concept that each given by	n point on a wave fro	nt may be considered a	s a new wave source is
(A) Snell's Law		(B) Huygen's Princ	sim1-
(C) Young's Law		(D) Hertz's Law	пріе
KL14/Phy	Series-A		. 5

Q.47	. A light ray of wav index 1.5. The wa (A) 3930 A ⁰ (C) 5495 A ⁰	elength 5895A ⁰ tra velength of the ray	avelling in vacuum enter in the medium is (B) 4200 A ⁰ (D) 7893 A ⁰	rs a medium of refractive
Q.48.	(A) between the p (B) at a distance b	aced at the focus A point point A and the len etween f and 2f fi nore than 2f from	s om the lens	ens of focal length f. Its image
Q.49. st	The resolving power in the second	er of a plane transn d order is	nission grating (having	15000 rulings on the grating
	A) 15,000 C) 45.000		(B) 30,000	
			(D) 60,000	
Q.50.	The speed of light in	n a medium of refr	active index 1.5 is nearl	ly
(A) $4.5 \times 10^{\circ} \text{m/s}$		(B) $3.0 \times 10^8 \text{m/s}$	
(1	C) $2.0 \times 10^8 \text{m/s}$		(D) $1.0 \times 10^8 \text{m/s}$	S
((A) remain unchang (C) be doubled	e slit and the scree ed	separation between the n is doubled. The fringe (B) be halved (D) increase fou	e width will
		between temperati	ures 727°C and 27° C. 1	The efficiency of the engine
(A	A) 70%	(B) 30%	(C) 10%	(D) 01%
•	Thich of the following unit mass of a subset (A) Heat of fusion (C) Internal heat	ng terms refer to th tance through one	degree? (B) Liquification	
`	(C) michiai neat		(D) Specific heat	t
,	t what point is the to (A) absolute zero (C) negative 40 degr		ne on the Celsius and Fa (B) zero (D) never	ahrenheit scales?
(.	eat from the sun rea A) conduction C) radiation	ches the earth by	(B) convection (D) All of the abo	ove
Q.56. Th	e principle that ene ther created or destr	rgy may be conver	ted from one form to an	
(/	A) first law of thern C) third law of therr	oyed is nodynamics.	(B) second law of (D) principle of pl	thermodynamics.
				~

Q.57. The spectral energy d 4753A ⁰ . The temperat	istribution of	a star at temperature 60)50 V 1
(A) 6050K (C) 12100K	ure of the star	(B) 3025K	ant is at 9506 A" is
		(D) 24200K	
Q.36. The rms speed of oxygo	en molecules	at room temperature :	500
Q.58. The rms speed of oxygon hydrogen at the same to	temperature is	nearly	500m/s. The rms speed of
(A) 31m/sec		(D) 10 5	
(C) 2000m/sec		(B) 125 m/se (D) 8000m/s	•
Q.59. The temperature of a bo	dv is increase	nd for	-
Q.59. The temperature of a bobody increases by a factory (A) 81/256	tor	^{ed from 27°C to 127°} C	. The radiation emitted by the
		(B) 27/127	antica by the
(C) 27/64		(D) 256/91	
Q.60. Copper of mass 200gm i 0.1cal/gm/°C. Assuming	c hoose d C	0	
0.1cal/gm/°C . Assuming	s neated from	25" C to 75° C. The sp	pecific heat of the copper.
energy of the copper blo	g tile change i	n volume to be negligil	pecific heat of the copper is ple, the change in internal
	CK 15		and a mental
(A) 100 joule		(R) 420 : 1	
(C) 1000 joule		(B) 420 joule (D) 4200 joule	
Q.61. Two electric bull		(2) 1200 Joule	•
Q.61. Two electric bulbs have re source, the energy consum	esistances in t ned in them is	he ratio 1:2. If they are in the ratio	joined in parallel to a d.c.
(Δ) 1.2			
	(B) 2:1	(C) 4:1	(D) 1:1
Q.62. The path of a free electron	in a metal is		(0) 1.1
(A) parabolic			
(C) a straight line		(B) circular	
		(D) zig-zag	
Q.63. When an electric fuse is rate	d 8 A, it mear	ns	
(A) it will not work if curren (B) it has a resistance of 8 Ω	t is less than 8	3 A	
(C) it will work Ω			
(C) it will work only if curren	nt is 8 A		
(D) it will melt if current exce	eeds 8 A		
Q.64. Energy consumed, in joules, in (A) 10	by a 100-wat	t light hull	
(A) 10 (C) 26 000		(B) 1000	r 10 minutes is
(C) 36,000		(D) 60,000	
VF-14/01			
KE14/Phy	Series-A		

Q.65. The relative orient electromagnetic w	tation of the magnetic	and electric field	s associated with an
(A) 180 degree	vave is		
(C) 45 degree		(B) 90 degr	
		(D) 22.5 de	gree
(C) perpendicular	opposite to that of cur	a linear current c	arrying conductor are
Q.67. 30 coulomb of char (A) 0.8×10 ⁻¹⁹ A	ge flowing through		
(A) $0.8 \times 10^{-19} \text{A}$	ge nowing unough a v		S
(C) 1.0 A		(B) 0.5A (D) 30 A	
0.60		· •	
Q.68.An electron is broug	ht towards another elec	ctron. The electri	c potential energy of the system
		(B) increases	e potential chergy of the system
(C) does not change		(D) becomes	
	ween the plates of a nserted between the per to that before inserting		pacitor is d. A metal sheet of of the capacitance after the
O 70 The resistivity of :		() = · =	
Q.70. The resistivity of a wi (A) length	re varies with its		
(C) mass		(B) cross-secti	ion
(C) mass		(D) material	•
Q.71. A wire has a resistanc material, but having dou (A) 1 Ω	te 4 Ω . The resistance ble diameter will be (B) 4 Ω	of another wire α	of the same length and (D) 16 Ω
Q.72. Kirchhoff's first law t	for analyzing electrical		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Q.72. Kirchhoff's first law f (A) energy (C) momentum	or unaryzing electrical	(B) mass (D) charge	on the conservation of
Q.73. The number of turns in	a coil is doubled. Ite a	olf index	
(A) four times	s to dodoled. Its s		ecomes
(C) halved		(B) doubled (D) squared	
Q.74. In an a.c. circuit, power	r is consumed in		
(A) inductance only		(B) canacitanas	oul.
(C) resistance only		(B) capacitance(D) all the three	omy
KL14 Phy	Series-A		

Q.75.A charge Q is plantage of the current of the c	aced at the centre of a cuube is	be. The flux of the elec	ctric field through the six
(A) Q/ϵ_0	(B) $Q/2\varepsilon_0$	(C) $Q/6\epsilon_0$	(D) $Q/24\epsilon_0$
Q.76. The permanent in (A) paramagna (C) ferromagna		atoms of a material is a (B) diamagnetic (D) ferrimagneti	
Q.77. An a.c. source so one cycle and rn (A)0 and $30/\sqrt{2}$ (C) 0 and $30\sqrt{2}$	ns value of the voltage an 2 volt	$\xi = (30\text{V}) \sin (100\text{s}^{-1})\text{t}$. The respectively (B) 15 volt and 30 (D) 15 volt and 30	
Q.78. In a series L-C-R (A) 1.0	R circuit connected to an (B) 0.5	a.c supply, the power f	actor at resonance is (D) zero
Q.79. The energy requi	red to set up a dc current	t of 0.4 ampere in a coi	l of self-inductance 0.2
(A) 16×10^{-3} joule (C) 4×10^{-3} joule		(B) 8 x 10 (D) 1 x 10	•
Q.80. A conducting hole electric potential at (A) (Q/ $4\pi\epsilon_0$)(2/R) (C) infinity	llow sphere of radius R n at a point a distance R/2) volt	neters is given a charge from the centre of the s (B) $(Q/4\pi\epsilon_0)(1/R)$ (D) zero	sphere is
medium between 2A and plate sepa	trallel plate condenser C_1 the plates is air. Anoth aration d/2 has a medium itance of C_1 and C_2 is (B) 1:8	er parallel plate conder	distance d apart. The user C_2 with area of plate 2 between the plates. The (D) 4:1
Q.82. If the dielectric co (A) 40.5×10^{-12} n (C) 10.5×10^{-12} ml			ly
Q.83. The S.I unit of ele (A) volt/meter (C) volt. meter	retric flux is .	(B) meter/volt (D) volt.m ²	
Q.84. The energy of an 2	X-ray photon is 2 keV. It	s frequency, in units of	f hertz, is nearly:
(A) 3.2×10^{-17} (C) 5×10^{17}		(B) $2x10^{17}$ (D) 2×10^{18}	·

Q.85. The ratio of mass of a proton an	d that of an electron is approximately
(A) 200	(B) 2000
(C) 20,000	(D) 2,00,000
Q.86. Interference phenomenon of ligh	at demonstrates
(A) particle nature of light	(B) wave nature of light
(C) transverse nature of light	(D) dual nature of light
,	(2) dual nature of right
Q.87. How many quarks make up a neu	tron?
- (A) 1 (B) 2	(C) 3 (D) 4
Q.88. For the hydrogen atom, the serie	s which describes electron transitions to the $N = 2$ state is
(A) Lyman series	(B) Paschen series
(C) Balmer series	(D) Pfund series
Q.89. The photoelectric effect is a dem	onstration of:
(A) the wave nature of light	(B) the particle nature of light
(C) inelastic collision of electro	
(e) metasac consists of electro	ns (D) the continuous spectrum of radiation
Q.90. Two charges Q and 9Q are place the distance of the point on the life field is zero is (A) 5cm (B) 10cm	d at a distance of 40cm from each other. From charge Q, ne joining the two charges at which the value of electric (C) 20 cm (D) 30cm
	•
Q.91. Among the below given wavelen	gths in A ⁰ , the hardest x-rays correspond to
(A) $1x10^2$ (B) $1x10$	(C) 1 (D) 1×10^{-1}
Q.92. What does the letter "s" stand for	in the acronym laser?
(A) scientific	(B) sinusoidal
(C) stimulated	(D) solar
	• •
Q.93. The radioactivity of a material dr. The half-life period of the materi	ops to $1/16^{th}$ of its initial value in a period of 16 years.
(A) 2 years	
· · · · · · · · · · · · · · · · · · ·	(B) 4 years
(C) 8 years	d) 16 years
Q.94. The energy of hydrogen atom in energy will be	the ground state is -13.6eV. In the energy level $n = 5$, its
(A) -0.54 Ev	(B) -0.85Ev
(C) -2.72Ev	(D) -5.4eV
Q.95. An α- particle is emitted by a nucl number of the residual atom are r	eus of radium 88Ra ²²⁶ . The atomic number and the mass
(A) 84 and 224	(B) 86 and 224
(C) 84 and 226	(D) 86 and 222
. ,	(D) 00 and 222

Q.96.	During a	negative	beta c	lec	av
		itomic ele			

- (A) an atomic electron is ejected
- (B) an electron which was already present within the nucleus is ejected
- (C) a neutron in the nucleus decays emitting an electron
- (D) a part of binding energy of the nucleus is converted into an electron
- Q.97. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference of V volt is
 - (A) eV/hc

(B) eh/cV

(C) hc/Ev

- (D) h/V
- Q.98. In a p-n-p transistor, the relation between emitter-current i_e , base-current i_b and collectorcurrent i_c is
 - (A) $i_c = i_E i_b$

(B) $i_b = i_E - i_c$

(C) $i_E = i_c - i_b$

- (D) None of these
- Q.99. A p-n junction diode can be used as
 - (A) modulator

(B) amplifier

(C) oscillator

- (D) rectifier
- Q.100. The NAND gate is an AND gate followed by
 - (A) NOT gate

(B) OR gate

(C) AND gate

(D) NAND gate